

Physics Unit 12

41508			
	6368		
	This Slideshow was developed to accompany the textbook		
1526	OpenStax Physics		
22154	 Available for free at 		
1020	https://openstaxcollege.org/textbooks/college-physics		
95687	By OpenStax College and Rice University		
20215	2013 edition		
	Some examples and diagrams are taken from the textbook.		
	Slides created by		
	Richard Wright, Andrews Academy		
0002	<u>rwright@andrews.edu</u>		

Objectives: Students will correctly answer conceptual questions about the postulates of special relativity.

Students will correctly answer questions about the proper time and dilated time.

Students will correctly solve problems involving time dilation.

Focus: Einstein wondered what he would see if her were to ride a beam of light. On earth, if you travel at the same speed as a wave, the wave appears to be still relative to you. So if you were on a beam of light, you would be traveling the same speed as the wave and you would observe everything to still relative to you. That means you could see anything since no new light would come to you. Einstein didn't like that. One day while talking with a friend about how long it takes light to arrive from various clocks in the city, Einstein solved the problem. He decided that if the speed of light was the fastest anything could travel, then all this problems were solved.

In the picture: Earth based reference frame and airplane based reference frame for observing the event of a shuttle launch

Newton's Law of Inertia is Newton's First Law of Motion - Objects at rest stay at rest and objects in motion stay in motion on a straight line unless acted on by a force.

41508 41508 14-01 Einstein's Postulates and Time Dilation				
 Einstein built theory of special relativity on these postulates. 				
22154 🗆 The Relativity Postulate				
 The laws of physics are the same in every inertial reference frame. 				
20215 The Speed of Light Postulate				
inertial reference frame, always has the same value of c, no matter how fast the source of light and the observer are moving relative to each other.				
0006				

41508 14-01 Einstein's Postulates and Time Dilation				
1526 22154 1020	 Consequences of Relativity Postulate Any inertial reference frame is as good as any other. 			
95687 20215	You can't say any reference frame is truly at rest.			
0007	There is no absolute velocity or rest, only velocity relative to the reference frame.			

41508 41508 14-01 Einstein's Postulates and Time Dilation				
	6368			
1526	Simultaneous			
22154	Just because two events appear			
1020	simultaneous to one observer does not mean			
95687	all observes see the events simultaneously			
20215				
0009				

While we don't move at relativistic velocities (speeds that are a large fraction of c), time dilation can cause problems. For example, it would make clocks on GPS satellites out of synch with earth clocks and throw off the position.

$$\Delta t = 10 \text{ minutes}, v = 0.25c$$

$$\Delta t = \frac{\Delta t_0}{\sqrt{1 - \left(\frac{v^2}{c^2}\right)}}$$

$$10 \text{ minutes} = \frac{\Delta t_0}{\sqrt{1 - \left(\frac{(0.25c)^2}{c^2}\right)}} \to \Delta t_0 = 10 \min \sqrt{1 - (0.0625)} = 9.682458 \text{ min}$$

$$= 580.9 \text{ s}$$

41508 41508 Dilation					
1526	 6368 Picard is on Rigel 7 and needs to go to Earth 776.6 light- years away, but the Enterprise's warp drive is broken. If full 				
22154 1020	impulse is ³ / ₄ the speed of light, how long will a Rigelian think it will take the Enterprise to get to Earth?				
95687	 Δt = 1035.47 yrs How long will the Enterprise's crew think it will take? 				
20215	□ Δt ₀ = 684.90 yrs				
00015					

1 light–year is the distance light will travel in a year.

- a) $\Delta t = \frac{776.6 \, ly}{0.75} = 1035.47 \, years$ (the Rigelian measures dilated time because the events of leaving and arriving are at rest to the starship they both happen outside the starship's windows)
- b) $\Delta t = \frac{\Delta t_0}{\sqrt{1 \left(\frac{v^2}{c^2}\right)}} \to 1035.47 \ yrs = \frac{\Delta t_0}{\sqrt{1 \left(\frac{(0.75c)^2}{c^2}\right)}} \to \Delta t_0 = 1035.47 \ yrs \sqrt{1 0.5625} = 684.90 \ yrs$

41508	14-01 Practice Wo	rk	
	6368		
1526	 If you work really fast, it will seem like you took less 		
22154	time than an outside		
1020	observer measures.		
95687			
20215	\square Read 28.3		
			E
00017			

41508 14-02 Length Contraction							
	6368						
1526							
22154							
1020	□ Since the observer	m	oving with the	event			
95687	measures a different time than the observer not moving with the event, are						
20215							
00019							

Objectives: Students will correctly distinguish between contracted length and proper length.

Students will correctly solve problems involving length contraction. Focus: Answer questions on previous assignment. See this slide. (Since the observer moving with the event measures a different time than the observer not moving with the event, are the lengths different?)

If you moved near the speed of light you would be the same height, but very thin.

This is as observed by the person moving with the event.

707
$$ft = L_0 \sqrt{1 - \frac{(0.7c)^2}{c^2}}$$

 $L_0 = 990 ft$

Of course all the measuring devices are shortened as well, so the measurements would be the same.

41508	14-02 Pratice Work
	6368
1526	Don't stretch these problems out too long
22154	probleme out too long.
1020	
95687	□ Read 28.4
20215	
00024	
00024	

Objectives: Students will correctly distinguish between when relativistic addition of velocities is used and when nonrelativistic addition is used.

Students will correctly solve problems involving relativistic addition of velocities.

Students will correctly solve problems involving nonrelativistic addition of velocities.

Focus: Answer questions on previous assignment. Review nonrelativistic addition of velocities.

Velocity of Ball to Truck + Velocity of Truck to Ground = Velocity of Ball to Ground Subscripts show the order

$$v_{LG} = \frac{v_{LT} + v_{TG}}{1 + \frac{v_{LT}v_{TG}}{c^2}} = \frac{c + v_{TG}}{1 + \frac{cv_{TG}}{c^2}} = \frac{c + v_{TG}}{1 + \frac{v_{TG}}{c}} = \frac{c + v_{TG}}{\frac{c}{c} + \frac{v_{TG}}{c}} = \frac{c + v_{TG}}{\frac{c + v_{TG}}{c}} = \frac{(c + v_{TG})c}{c + v_{TG}} = c$$

$$v_{EntE} = 0.9c, v_{KE} = 0.7c$$

$$v_{EntK} = \frac{v_{EntE} + v_{EK}}{1 + \frac{v_{EntE}v_{EK}}{c^2}}$$

$$v_{EntK} = \frac{(0.9c \pm 0.7c)}{1 + \frac{(0.9c)(-0.7c)}{c^2}}$$

$$v_{EntK} = 0.541c$$

$$\lambda_{obs} = \lambda_s \sqrt{\frac{1 + \frac{u}{c}}{1 - \frac{u}{c}}}$$
$$\lambda_{obs} = (475 \, nm) \sqrt{\frac{1 + \frac{0.541c}{c}}{1 - \frac{0.541c}{c}}} = 870 \, nm$$

41508	14-03 Homework
	6368
1526	You can do these problems relatively
22154	quickly.
1020	
95687	Pood 29.5
20215	Redu Zo.5
00033	

Objectives: Students will correctly solve problems involving relativistic momentum. Focus: Answer questions on previous assignment. Review what the law of conservation of momentum is.

$$p = \frac{0.5 \, kg \cdot 3\frac{m}{s}}{\sqrt{1 - \frac{\left(3\frac{m}{s}\right)^2}{\left(4\frac{m}{s}\right)^2}}} = 2.27 \, kg\frac{m}{s}$$
$$p = \left(0.5 \, kg \cdot 3\frac{m}{s}\right) = 1.5 \, kg\frac{m}{s}$$

Dom'Jot is a game is Star Trek similar to pool or billards.

41508	14-04 Homework
	6368
1526	 Build some momentum as you
22154	attempt these
1020	problems.
95687	
20215	Read 28.6
00039	

Objectives: Students will correctly solve problems involving energy of objects.

Students will correctly solve problems involving kinetic energy at relativistic speeds.

Students will correctly answer conceptual problems about the massenergy relationship.

Focus: Answer questions about previous assignment. Everybody knows that Einstein discovered that $E = mc^2$ but there is more to it.

Discovered by Einstein

$$E = (0.005 \, kg) \left(3.00 \times 10^8 \frac{m}{s}\right)^2 = 4.5 \times 10^{14} \, J$$
$$P = \frac{W}{t} \to 60 \, W = 4.5 \times 10^{14} \, \frac{J}{t} \to t = 7.5 \times 10^{12} \, s = 237665 \, yr \, 9 \, months$$

KE = kinetic energy

At speeds far less than c, this becomes about $\frac{1}{2}mv^2$

41508 14-05 Relativistic Energy					
	6368				
	Mass and energy are the same				
1526					
22154					
1020	\square A change in one, means a change in the other.				
95687					
20215	For example, you pick up your backpack and				
	increase its gravitational potential energy.				
	Since the energy increases, the mass must increase.				
	So when you carry your backpack, it is actually heavier than when it is on the ground.				
00044					

Yes, the change in mass is incredibly small.

$$P = \frac{W}{t} \to 3.92 \times 10^{26} W = \frac{E}{31557600 \, s} \to E = 1.237 \times 10^{34} \, J$$
$$E = mc^2 \to 1.237 \times 10^{34} \, J = m \left(3.00 \times 10^8 \frac{m}{s}\right)^2 \to m = 1.37 \times 10^{17} \, kg$$

The denominator of the KE formula would go to zero, which means value of the fraction goes to infinity.

41508	14-05 Homework	
	6368	
1526	You have less mass if you use energy	
22154	you doo onorgy.	
1020		
95687		
20215		
00047		